# Segmented Coronagraph Design and Analysis (SCDA) A study by the Exoplanet Exploration Program 

Stuart Shaklan<br>Jet Propulsion Laboratory, California Institute of Technology<br>November 29, 2016

Exoplanet Exploration Program Technical Colloquium
JPL

## Overview

- Motivation
- Defining the SCDA task
- Selection of apertures, comparison of their relative merits
- Funded Teams
- Progress on Apodized Pupil Lyot Coronagraph (APLC)
- New Optimization approach: Auxiliary Field Optimization (AFO)
- Progress on Vortex and Lyot Coronagraphs (VC, LC)
- Progress on Phase Induced Amplitude Apodization Coronagraphs
- Science Yield Modeling
- Plans for the coming year

THE FUTURE OF UVOIR SPACE ASTRONOMY





- 12 m telescope
- $10^{\wedge} 10$ suppression
- IWA = $2 \lambda / D$ or $3.6 \lambda / D$
- IFU R=70-100
- Band $400-2000 \mathrm{~nm}$
- Goal: characterize dozens of exo-Earths


## Defining the SCDA Task

Exoplanet Exploration Program

- Find coronagraph designs that enable direct imaging of exo-earths with large, segmented-aperture, partially obscured telescopes.
- Identify attributes of reference apertures that impact performance: central obscuration, spiders, gaps, aperture perimeter
- Optimize for science return

- Consider the fundamental limit set by finite stellar diameter;.
- Assume pointing errors are small compared to stellar diameter, e.g. sub-mas
- Ignore polarization since that is a function of $\mathrm{f} / \#$, onor off-axis, coating, bandpass, and bandwidth.
- Initial design investigation
- Collaboration/ Cross-fertilization encouraged
- Will inform technology gap and future technology investments.

"ATLAST" APLC
N'Diaye et al.ApJ 8I8, 2 (2016)
$10^{-10}$ contrast over $10 \%$ BW
Working angle 4 - $10 \lambda / D$
To.7/circ $=7.0 \%$


## Selection of Apertures

Exoplanet Exploration Program
Hex-4 Hex-3 Hex-2 Hex-1 Keystone 12 Piewedge 12 Piewedge 8


- This set of apertures and secondary mirror supports represents the likely range of segmented apertures that could be manufactured and launched without onorbit assembly.
- An SLS is assumed.
- The optical prescription for all telescopes is the same: f/1.25 12-m diameter primary, nearly parabolic, with secondary mirror 13.1 m in front of primary. Secondary obscuration is $14 \%$. Cassegrain field is 10 arcsec diameter.
- Gaps: 20 mm ( 6 mm spacing, 7 mm edge roll-off). Spiders 25 mm wide.


## Some Space Telescope concepts

Exoplanet Exploration Program
Large Optical Segment Project


AOSD


LAMP telescope


## Comments on the Apertures

Exoplanet Exploration Program


- 4-ring: stiffer, lighter, HST size.
- Requires the most actuators
- 3-, 2-, 1-ring as segments grow, the system sees increasing...
- Challenges to segment stiffness
- Gravity sag
- Testing difficulty including gravity offloading, model fidelity, GSE
- 1-ring - >4 m tip-to-tip
- Closed back ULE demonstrated. Open back Zerodur possible but risky due to depth.
- Keystone, piewedge
- Asymmetry complicates mounting and control. Warping harness?
- Also impacts metrology needs.
- Piewedges have $5-\mathrm{m}$ long sides.
- Thermal stability is dominated by front-to-back gradients.
- Wavefront varies as radius^2.
- Gradients decrease with thermal time constant (want more thermal mass).
- $\quad 1-2 \mathrm{pm}$ stability possible with 1 mK control on 1.5 m ULE mirrors. Could be 10 x worse on 5 m segments.



## Comparison of Aperture Relative Merits

Table 1 Relative challenges of designs under consideration. Green to red designates least to most challenging. No absolute scale of difficulty is implied.


A document detailing the trades is available at: https://exoplanets.nasa.gov/system/.../211_SCDAApertureDocument050416.pdf

Authors: Feinberg, Hull, Knight, Krist, Lightsey, Matthews, Stahl, Shaklan

## Funded Teams

- Apodized Pupil Lyot Coronagraph (APLC)
- Led by R. Soummer, with N. Zimmerman, M. Ndiaye (Post-doc), J. Mazoyer (Post-doc), C. Stark
- Vortex Coronagraph (VC) and Lyot Coronagraph (LC)
- Led by D. Mawet, with G. Ruane (Post-doc), and J. Jewell (JPL)
- Phase Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC)
- Led by O. Guyon, with J. Codona, R. Belikov, students.
- Optimization approaches
- R. Vanderbei working with the teams
- Teams began work early in CY16.
- Presently the Visible Nuller team is not funded through SCDA as they are focused on TDEM activities.
- Now for the presentations from the teams:
- Neil Zimmerman APLC
- Garreth Ruane VC
- Olivier Guyon PIAACMC


## Science Yield Modeling

- APLC and VC have submitted designs to Chris Stark.
- Chris runs them through his DRM tool and evaluates the observational completeness for a number of designs.
- Method outlined in Stark et al $(2014,2015)$
- Target list generated using Hipparcos catalog
- Nearest stars < 50 pc
- Main sequence and sub-giant stars without companions.
- Model-based angular size
- Eta_earth = 0.1
- Exozodi density ~ solar system density (so 3 'zodis' of dust)
- Telescope throughput = 0.56 (without coronagraph losses).
- Total integration time $=1$ year
- V band photometric detection limit $\mathrm{S} / \mathrm{N}=7$
- Systematic limit: Planet flux >0.1 Stellar leakage flux
- Multiple visits allowed.
- Finite stellar diameter included, aberrations / pointing / imperfections not included.


## Preliminary Yield Modeling Results Detection in Visible Light

- NOTE: These results will change as designs evolve. The results below are for 'non-robust' designs that assume an ideal telescope, perfect alignment of the masks, and no polarization losses.
- Yields will go up with improved designs.
- Yields will come down when robustness and aberrations are included.
- Characterization yields will be much smaller.

|  | APLC |  | VC |  |
| :--- | :---: | :---: | :---: | :---: |
| On m | On-Axis | Off-Axis | On-Axis | Off-Axis |
| Hex 1 | 22 | 31 |  | 27 |
| Hex 4 | 26 | 28 | 4 | 8 |
| Keystone 24 | 31 | 36 | 7 | 31 |
| Circular | 31 | 39 | 8 | 55 |
|  |  |  |  |  |
| 6.5 m |  |  |  |  |
| Hex 1 | 8 | 11 | 1 | 10 |
| Hex 4 | 9 | 10 | 2 | 3 |
| Keystone 24 | 11 | 12 | 3 | 11 |
| Circular | 10 | 13 | 3 | 19 |
|  |  |  |  |  |
| 4 m |  |  |  |  |
| Hex 1 | 3 | 5 | 0 | 4 |
| Hex 4 | 3 | 4 | 1 | 1 |
| Keystone 24 | 4 | 5 | 1 | 4 |
| Circular | 4 | 5 | 1 | 8 |

- Generated white paper on segmented coronagraph aperture
- Powerful new optimization approaches employed for Vortex and PIAA coronagraphs.
- Significant advances have been made in coronagraph throughput for on-axis segmented mirrors.
- Throughput of APLC has doubled, and bandwidth increased by $50 \%$ compared to 2015.
- Significant advances in coronagraph robustness.
- APLC designs allow $\sim 0.6 \%$ scale errors, and wavefront control allows an additional 0.2\% margin.
- Significant progress in coronagraph contrast
- Broadband (10\%) contrast of 1e-10 for both APLC and VC.
- Viable VC designs did not exist for segmented apertures in 2015.
- Inner working angles of >3 lambda/D for APLC and VC.
- Supercomputers employed to explore thousands of designs (APLC).
- Powerful new optimization approach opens design space for VC.
- Viable solutions with amplitude-only masks (DMs not needed).
- Pie-wedge and Keystone emerging as significantly higher throughput than Hex segment apertures.
- On-axis APLC designs approach off-axis (unobscured) in coronagraph performance.
- With VC, off-axis design has double the throughput of on-axis.
- Continue design of HLC and VC coronagraphs (Mawet, CIT)
- Battery of designs, robustness, science return, supercomputers
- Explore mask optimization for HLC
- Gray-scale mask studies (in collaboration with STScl and JPL)
- Laboratory demo of high contrast solution (1e-7 or better)
- Continue design of APLC coronagraphs (Soummer, STScI)
- Battery of designs, add DoFs in focal plane, combine with WFC, robustness, science return
- Gray-scale mask studies (in collaboration with CIT and JPL)
- Laboratory demo of high contrast solution (1e-7 or better)
- Continue design of PIAACMC (Guyon and Belikov)
- Explore design space
- Battery of designs, robustness, science return
- Continue development of Auxiliary Field Optimization (Jewell, JPL)
- Evaluation of designs (JPL)
- Dynamics error budget for one of the designs (JPL)


## Auxiliary Field Optimization: Powerful New Approach to Optimizing the DM shapes and Pupil Amplitude Profile

## Iterative Solution of Phase Control with an Auxiliary Field (Jeff Jewell, JPL)



## Domains of AFO, EFC/SM, and ACAD



# Powerful New Optimization Approaches: Auxiliary Field, and Linear Coronagraph Theory 

Exoplanet Exploration Program

- Two new approaches, Auxiliary Field Optimization (AFO) and Linear Coronagraph Theory (LCT) have been developed under SCDA funding.
- These complement the approaches used to date: Electric Field Conjugation (EFC) and its close cousin Stroke Minimization (SM), and Active Correction of Amplitude Discontinuities (ACAD)
- A quick summary of the approaches, with EFC and ACAD discussed as reference points:
- AFO: for generalized solutions with segmented pupils
- New algorithm finds the complex pupil field that best minimizes the dark hole, subject to physical limitations of DMs. Developed in conjunction with the vortex coronagraph design effort.
- Linear between pupil and image plane.
- Proven useful for addressing pupil discontinuities in a wide range of conditions: DMs only, amplitude masks only, combinations of both.
- So far used only to address the pupils and wavefronts, not the design of the coronagraph masks or Lyot Stop.
- LCT: for design of focal plane masks given an apodization function
- New algorithm for optimizing the focal plane mask given a pupil apodization .Developed as part of the PIAA design effort.
- Linear approach based on expressing arbitrary apodized pupil complex max coronagraph as a series of linear matrix operations.
- Linear operators provide a means of projecting out undesired modes, e.g. rejecting leakage from tip-tilt or finite star diameter.
- EFC/SM: for 'fine-tuning' the broadband dark hole.
- Use DMs to minimize scatter in the dark hole. EFC sets the contrast goal to $\mathrm{C}=0$. SM minimizes the stroke subject to an iteratively decreasing contrast goal.
- This algorithm maps DM phase to image plane electric field, which is a non-linear mapping. It requires recalculation of large Jacobian matrices as the DM shapes evolve.
- ACAD: for pre-conditioning the pupil to account for obscuring struts and segment gaps
- Use ray optics to compute DM shapes that flatten the pupil, effectively filling in segment gaps.
- Use EFC/SM to account for diffraction and optimize the dark hole.
- Tends to lead to large DM strokes. Recent developments show that a patient application of SM (thousands of iterations, careful control of convergence) leads to better solutions with smaller DM strokes.

