

Segmented Coronagraph Design and Analysis (SCDA) A study by the Exoplanet Exploration Program

Stuart Shaklan Jet Propulsion Laboratory, California Institute of Technology November 29, 2016

Exoplanet Exploration Program Technical Colloquium JPL

© California Institute of Technology. All Rights Reserved. Government sponsorship acknowledged.

- Motivation
- Defining the SCDA task
- Selection of apertures, comparison of their relative merits
- Funded Teams
- Progress on Apodized Pupil Lyot Coronagraph (APLC)
- New Optimization approach: Auxiliary Field Optimization (AFO)
- Progress on Vortex and Lyot Coronagraphs (VC, LC)
- Progress on Phase Induced Amplitude Apodization Coronagraphs
- Science Yield Modeling
- Plans for the coming year

FROM COSMIC BIRTH TO LIVING EARTHS

- Find coronagraph designs that enable direct imaging of exo-earths with large, segmented-aperture, partially obscured telescopes.
- Identify attributes of reference apertures that impact performance: central obscuration, spiders, gaps, aperture perimeter
- Optimize for science return
- Consider the fundamental limit set by finite stellar diameter;.
 - Assume pointing errors are small compared to stellar diameter, e.g. sub-mas
- Ignore polarization since that is a function of f/#, onor off-axis, coating, bandpass, and bandwidth.
- Initial design investigation
- Collaboration/ Cross-fertilization encouraged
- Will inform technology gap and future technology investments.

"ATLAST" APLC N'Diaye et al. ApJ 818, 2 (2016) 10⁻¹⁰ contrast over 10% BW Working angle 4 – 10 λ/D T_{0.7/circ} = 7.0%

Selection of Apertures

- This set of apertures and secondary mirror supports represents the likely range of segmented apertures that could be manufactured and launched without on-orbit assembly.
- An SLS is assumed.
- The optical prescription for all telescopes is the same: f/1.25 12-m diameter primary, nearly parabolic, with secondary mirror 13.1 m in front of primary. Secondary obscuration is 14%. Cassegrain field is 10 arcsec diameter.
- Gaps: 20 mm (6 mm spacing, 7 mm edge roll-off). Spiders 25 mm wide.

Some Space Telescope concepts

Exoplanet Exploration Program

LAMP telescope

Comments on the Apertures

- 4-ring: stiffer, lighter, HST size.
 - Requires the most actuators
- 3-, 2-, 1-ring as segments grow, the system sees increasing...
 - Challenges to segment stiffness
 - Gravity sag
 - Testing difficulty including gravity offloading, model fidelity, GSE
- 1-ring >4 m tip-to-tip
 - Closed back ULE demonstrated. Open back Zerodur possible but risky due to depth.
- Keystone, piewedge
 - Asymmetry complicates mounting and control. Warping harness?
 - Also impacts metrology needs.
- Piewedges have 5-m long sides.
- Thermal stability is dominated by front-to-back gradients.
 - Wavefront varies as radius².
 - Gradients decrease with thermal time constant (want more thermal mass).
 - 1-2 pm stability possible with 1 mK control on 1.5 m ULE mirrors. Could be 10x worse on 5 m segments.

Some Deployment Approaches

Exoplanet Exploration Program

Figure 2 Some possible fold lines.

Stowed

Deployed

Table 1 Relative challenges of designs under consideration. Green to red designates least to mostchallenging. No absolute scale of difficulty is implied.

	APERTURES								
	4 ring	3 ring	2 ring	1 ring	Keystone 24	Pie wedge 12	Pie wedge 8		
Segment Shape	Hex	Hex	Hex	Hex	Keystone	Pie wedge	Pie wedge		
Max Segm. Dimension	1.54 m	1.98 m	2.77 m	4.62 m	2.5 m x 3.14 m	5 m x 3.14 m	5 m x 4.71 m		
Segments									
Backplane									
Stability									
Launch Configuration									
SM Support									
Overall Ranking									

A document detailing the trades is available at:

https://exoplanets.nasa.gov/system/.../211_SCDAApertureDocument050416.pdf

Authors: Feinberg, Hull, Knight, Krist, Lightsey, Matthews, Stahl, Shaklan

- Apodized Pupil Lyot Coronagraph (APLC)
 - Led by R. Soummer, with N. Zimmerman, M. Ndiaye (Post-doc), J. Mazoyer (Post-doc), C. Stark
- Vortex Coronagraph (VC) and Lyot Coronagraph (LC)
 - Led by D. Mawet, with G. Ruane (Post-doc), and J. Jewell (JPL)
- Phase Induced Amplitude Apodization Complex Mask Coronagraph (PIAACMC)
 - Led by O. Guyon, with J. Codona, R. Belikov, students.
- Optimization approaches
 - R. Vanderbei working with the teams
- Teams began work early in CY16.
- Presently the Visible Nuller team is not funded through SCDA as they are focused on TDEM activities.

- Now for the presentations from the teams:
- Neil Zimmerman APLC
- Garreth Ruane VC
- Olivier Guyon PIAACMC

- APLC and VC have submitted designs to Chris Stark.
- Chris runs them through his DRM tool and evaluates the observational completeness for a number of designs.
- Method outlined in Stark et al (2014, 2015)
- Target list generated using Hipparcos catalog
 - Nearest stars < 50 pc
 - Main sequence and sub-giant stars without companions.
 - Model-based angular size
- Eta_earth = 0.1
- Exozodi density ~ solar system density (so 3 'zodis' of dust)
- Telescope throughput = 0.56 (without coronagraph losses).
- Total integration time = 1 year
- V band photometric detection limit S/N=7
- Systematic limit: Planet flux > 0.1 Stellar leakage flux
- Multiple visits allowed.
- Finite stellar diameter included, aberrations / pointing / imperfections not included.

Preliminary Yield Modeling Results Detection in Visible Light

- NOTE: These results will change as designs evolve. The results below are for 'non-robust' designs that assume an ideal telescope, perfect alignment of the masks, and no polarization losses.
 - Yields will go up with improved designs.
 - Yields will come down when robustness and aberrations are included.
 - Characterization yields will be much smaller.

	APLC			VC		
	On-Axis	Off-Axis		On-Axis	Off-Axis	
12 m						
Hex 1	22	31		3	27	
Hex 4	26	28		4	8	
Keystone 24	31	36		7	31	
Circular	31	39		8	55	
6.5 m						
Hex 1	8	11		1	10	
Hex 4	9	10		2	3	
Keystone 24	11	12		3	11	
Circular	10	13		3	19	
4 m						
Hex 1	3	5		0	4	
Hex 4	3	4		1	1	
Keystone 24	4	5		1	4	
Circular	4	5		1	8	

- Generated white paper on segmented coronagraph aperture
- *Powerful new optimization approaches* employed for Vortex and PIAA coronagraphs.
- Significant advances have been made in *coronagraph throughput* for on-axis segmented mirrors.
 - Throughput of APLC has doubled, and bandwidth increased by 50% compared to 2015.
- Significant advances in coronagraph robustness.
 - APLC designs allow ~0.6% scale errors, and wavefront control allows an additional 0.2% margin.
- Significant progress *in coronagraph contrast*
 - Broadband (10%) contrast of 1e-10 for both APLC and VC.
 - Viable VC designs did not exist for segmented apertures in 2015.
- *Inner working angles* of >3 lambda/D for APLC and VC.
- Supercomputers employed to explore thousands of designs (APLC).
- *Powerful new optimization approach* opens design space for VC.
 - Viable solutions with amplitude-only masks (DMs not needed).
- Pie-wedge and Keystone emerging as significantly higher throughput than Hex segment apertures.
 - On-axis APLC designs approach off-axis (unobscured) in coronagraph performance.
 - With VC, off-axis design has double the throughput of on-axis.

- Continue design of HLC and VC coronagraphs (Mawet, CIT)
 - Battery of designs, robustness, science return, supercomputers
 - Explore mask optimization for HLC
 - Gray-scale mask studies (in collaboration with STScI and JPL)
 - Laboratory demo of high contrast solution (1e-7 or better)
- Continue design of APLC coronagraphs (Soummer, STScl)
 - Battery of designs, add DoFs in focal plane, combine with WFC, robustness, science return
 - Gray-scale mask studies (in collaboration with CIT and JPL)
 - Laboratory demo of high contrast solution (1e-7 or better)
- Continue design of PIAACMC (Guyon and Belikov)
 - Explore design space
 - Battery of designs, robustness, science return
- Continue development of Auxiliary Field Optimization (Jewell, JPL)
- Evaluation of designs (JPL)
- Dynamics error budget for one of the designs (JPL)

Auxiliary Field Optimization: Powerful New Approach to Optimizing the DM shapes and Pupil Amplitude Profile Exoplanet Exploration Program

Iterative Solution of Phase Control with an Auxiliary Field (Jeff Jewell, JPL)

2)

min

- Fresnel Propagators denoted P_f and (backwards) P_f^{\dagger}
- Goal is to find phase solutions in the entrance pupil $e^{i\Phi}$ and out of plane $e^{i\Psi}$ for any aperture in order to directly minimize on-axis source light in the image plane "dark hole"

$$\left\|W - P_f^{\dagger} e^{i\Psi} P_f e^{i\Phi} A\right\|^2$$

Domains of AFO, EFC/SM, and ACAD

- Two new approaches, Auxiliary Field Optimization (AFO) and Linear Coronagraph Theory (LCT) have been developed under SCDA funding.
 - These complement the approaches used to date: Electric Field Conjugation (EFC) and its close cousin Stroke Minimization (SM), and Active Correction of Amplitude Discontinuities (ACAD)
- A quick summary of the approaches, with EFC and ACAD discussed as reference points:
- AFO: for generalized solutions with segmented pupils
 - New algorithm finds the complex pupil field that best minimizes the dark hole, subject to physical limitations of DMs. Developed in conjunction with the vortex coronagraph design effort.
 - Linear between pupil and image plane.
 - Proven useful for addressing pupil discontinuities in a wide range of conditions: DMs only, amplitude masks only, combinations of both.
 - So far used only to address the pupils and wavefronts, not the design of the coronagraph masks or Lyot Stop.

• LCT: for design of focal plane masks given an apodization function

- New algorithm for optimizing the focal plane mask given a pupil apodization .Developed as part of the PIAA design effort.
- Linear approach based on expressing arbitrary apodized pupil complex max coronagraph as a series of linear matrix operations.
- Linear operators provide a means of projecting out undesired modes, e.g. rejecting leakage from tip-tilt or finite star diameter.
- EFC/SM: for 'fine-tuning' the broadband dark hole.
 - Use DMs to minimize scatter in the dark hole. EFC sets the contrast goal to C=0. SM minimizes the stroke subject to an iteratively decreasing contrast goal.
 - This algorithm maps DM phase to image plane electric field, which is a non-linear mapping. It requires
 recalculation of large Jacobian matrices as the DM shapes evolve.
- ACAD: for pre-conditioning the pupil to account for obscuring struts and segment gaps
 - Use ray optics to compute DM shapes that flatten the pupil, effectively filling in segment gaps.
 - Use EFC/SM to account for diffraction and optimize the dark hole.
 - Tends to lead to large DM strokes. Recent developments show that a patient application of SM (thousands of iterations, careful control of convergence) leads to better solutions with smaller DM strokes.