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Simpler to manufacture and less polarization sensitivity
than e.g. barcode masks
Central obstruction can be used for secondary
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Inside the Lab Optical Layout Schematic Algorithm: Speckle Nulling

Algorithm:
Enclosure Switchable g . . .
wavelength « Look for the brightest pixel in the dark zone
i oft « Compute a DM ripple that would place a speckle
B fean /1 s320m centered on that pixel '
« Find phase which minimizes that pixel
B d « Update DM
Offaxis 6" 1110 parabolics shaped pupil - source | /| 594nm « Repeat
~4/20 surface figure Mask (10mm) o
‘white light on
e — (000] 0 - Computer Interface for interactive and automatic speckle nulling
- I e :
mode
1 aperture pros

« Clean room

¢ 1.2x5m
vibration-isolated
optical bench
Enclosure to
eliminate thermal

« Can select from any combination of 3 laser wavelengths, or
insert a broadband white light source (halogen lamp)

« Single mode fiber creates a simulated star

« First parabolic brings the star out to infinity

Pupil plane
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bright portions of the PSF
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Everything else is ideal.
Tends to get stuck, needs perturbations.
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» Shaped pupils are a promising technology for high-contrast imaging
« Initial runs of speckle-nulling-based wavefront correction achieved contrast of 106
e Simulations show that the limiting factor is the inability of speckle nulling to correct for mask trimming

* Two ways of overcoming this limit: better mask (less affected by trimming), or better estimation algorithm (such
as peak-a-boo).
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